Faber polynomials with common zero

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lattice Paths and Faber Polynomials

The rth Faber polynomial of the Laurent series f(t) = t + f0 + f1/t + f2/t + · · · is the unique polynomial Fr(u) of degree r in u such that Fr(f) = tr + negative powers of t. We apply Faber polynomials, which were originally used to study univalent functions, to lattice path enumeration.

متن کامل

The Faber Polynomials for Circular Sectors

The Faber polynomials for a region of the complex plane, which are of interest as a basis for polynomial approximation of analytic functions, are determined by a conformai mapping of the complement of that region to the complement of the unit disc. We derive this conformai mapping for a circular sector {;: \z\ < 1, |argz| < i/a}, where a > 1, and obtain a recurrence relation for the coefficient...

متن کامل

Derivatives of Faber Polynomials and Markov Inequalities

We study asymptotic behavior of the derivatives of Faber polynomials on a set with corners at the boundary. Our results have applications to the questions of sharpness of Markov inequalities for such sets. In particular, the found asymptotics are related to a general Markov-type inequality of Pommerenke and the associated conjecture of Erdős. We also prove a new bound for Faber polynomials on p...

متن کامل

Faber Polynomials of Matrices for Non-convex Sets

It has been recently shown that ||Fn(A)|| ≤ 2, where A is a linear continuous operator acting in a Hilbert space, and Fn is the Faber polynomial of degree n corresponding to some convex compact E ⊂ C containing the numerical range of A. Such an inequality is useful in numerical linear algebra, it allows for instance to derive error bounds for Krylov subspace methods. In the present paper we ext...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Analysis and Mathematical Physics

سال: 2021

ISSN: 1664-2368,1664-235X

DOI: 10.1007/s13324-020-00461-5